Mathematics, Statistics and Computer Science * MAJORS, MINORS

ASSOCIATE PROFESSORS: Julie M. Clark (chair), Stephen Wassell
ASSISTANT PROFESSOR: Molly Lynch
LECTURER: Erin Levering (director of Quantitative Reasoning), Giancarlo Schreamenti

The study of mathematics is motivated by its intrinsic beauty as well as its applicability to everyday life. Mathematics promotes a strengthening of critical and analytical problem-solving skills.

A student graduating with a mathematics major from Hollins will be a logical thinker who is well educated in major areas of mathematics (calculus, linear algebra, statistics, algebra, and analysis), in the application of mathematical concepts to problem solving, and in the development and communication of applied and theoretical mathematics. A recent survey of mathematics majors shows careers as bankers, teachers, defense analysts, actuaries, and programmers; and graduate school placements in mathematics, forensic science, medicine, and law.

*Note: Hollins does not offer a major or minor in either statistics or computer science.

REQUIREMENTS FOR A MAJOR IN MATHEMATICS (B.A.):

13 courses (40–42 credits)

- MATH 241: Calculus I (6)
- MATH 242: Calculus II (4)
- MATH 246: Laboratories in Mathematical Experimentation (2)
- MATH 255: Methods of Matrices and Linear Algebra (4)
- MATH 310: A Transition to Advanced Mathematics (4)
- MATH 316: Several-Variable Calculus (4)
- A 300-level MATH course in algebra (2) (Alg)
- A 300-level MATH course in analysis (2) (Ana)
- At least two additional 300-level MATH, STAT or CMPS 2 credit courses (4)
- MATH 471: Mathematics Seminar (2)
- MATH 490 (2, 2) or MATH 480 (2 and Short Term) or MATH 472 (2) as determined in consultation with members of the department
- STAT 251: Statistical Methods (4)

A student is exempted from MATH 241 and MATH 242 if she can demonstrate to the department's satisfaction her knowledge of the course(s).

REQUIREMENTS FOR A MAJOR IN MATHEMATICS (B.S.):

19 courses (66–70 credits)

REQUIRED COURSES IN MATHEMATICS AND STATISTICS:

- MATH 241: Calculus I (6)
- MATH 242: Calculus II (4)
- MATH 246: Laboratories in Mathematical Experimentation (2)
- MATH 255: Methods of Matrices and Linear Algebra (4)
- MATH 310: A Transition to Advanced Mathematics (4)
- MATH 316: Several-Variable Calculus (4)
- A 300-level MATH course in algebra (2) (Alg)
- A 300-level MATH course in analysis (2) (Ana)
- At least four additional 300-level MATH, STAT or CMPS 2 credit courses (8)
- MATH 471: Mathematics Seminar (2)
- MATH 490 (2, 2) or MATH 480 (2 and Short Term) or MATH 472 (2) as determined in consultation with members of the department
- STAT 251: Statistical Methods (4)

A student is exempted from MATH 241 and MATH 242 if she can demonstrate to the department's satisfaction her knowledge of the course(s).
REQUIRED ALLIED COURSES:
- Two courses (with laboratories) above the 200 level* from at least two of the following departments: biology, chemistry, computer science, or physics or four courses (with laboratories) above the 200 level* from the departments of biology, chemistry, or physics
 * or CHEM 105/105L: Principles of Chemistry or CMPS 160: Computer Science I

REQUIREMENTS FOR A MAJOR IN MATHEMATICS WITH A DATA SCIENCE CONCENTRATION (B.S.):
19 courses (62-64 credits)
- MATH 241: Calculus I (6)
- MATH 242: Calculus II (4)
- MATH 246: Laboratories in Mathematical Experimentation (2)
- MATH 255: Methods of Matrices and Linear Algebra (4)
- MATH 310: A Transition to Advanced Mathematics (4)
- MATH 316: Several-Variable Calculus (4)
- A 300-level MATH course in algebra (2) (Alg)
- A 300-level MATH course in analysis (2) (Ana)
- At least two additional 300-level MATH, STAT or CMPS 2 credit courses (4)
- CMPS 335: Data Mining Techniques (2)
- MATH 471: Mathematics Seminar (2)
- MATH 490 (2, 2) or MATH 480 (2 and Short Term) or MATH 472 (2) as determined in consultation with members of the department
- STAT 251: Statistical Methods (4)

REQUIRED ALLIED COURSE:
- One course with laboratory at or above the 200-level from one of the following departments: biology, chemistry, or physics.

REQUIRED COURSES IN COMPUTER SCIENCE:
- CMPS 160: Computer Science (4)
- CMPS 217: Data Structures (4)
- CMPS 245: Data Science and Visualization (4)

A student is exempted from MATH 241 and MATH 242 if she can demonstrate to the department’s satisfaction her knowledge of the course(s).

REQUIREMENTS FOR A MINOR IN MATHEMATICS:
5 courses (20 credits)
- MATH 241: Calculus I (6)
- MATH 242: Calculus II (4)
- MATH 246: Laboratories in Mathematical Experimentation (2)
- MATH 255: Methods of Matrices and Linear Algebra (4) or STAT 251: Statistical Methods (4)
- MATH 310: A Transition to Advanced Mathematics (4)

REQUIREMENTS FOR A MINOR IN DATA ANALYTICS:
7 courses (22 credits)
- STAT 251: Statistical Methods I (4)
- STAT 324: Data Wrangling (2)
- CMPS 160: Computer Science (4)
- CMPS 217: Data Structures (4)
- CMPS 245: Data Science and Visualization (4)
- CMPS 335: Data Mining Techniques (2)
- Two elective credits in STAT or CMPS at the 300 level
PLACEMENT IN MATHEMATICS AND STATISTICS COURSES:
A diagnostic/placement examination is recommended as a prerequisite for initial enrollment in any one of the following courses: MATH 130, MATH 140, MATH 152, MATH 241, STAT 140 and STAT 251.

COURSES IN MATHEMATICS:

MATH 100: INTRODUCTION TO QUANTITATIVE REASONING (4) Levering
This course is for students who need practice in applying fundamental mathematical skills (algebra, graphing, geometry, data analysis, and linearity) to real-life applications. The goal of the course is to develop the quantitative skills that promote problem solving with confidence. Open to first-year students. Prerequisite: appropriate score on Math/QR assessment. Offered both terms. (q)

MATH 105: QUANTITATIVE REASONING IN TODAY'S WORLD (4) Lynch, Schrementi, Wassell
This course focuses on the application of mathematics to the students' personal and social issues. It is designed to prepare students for the mathematics they will encounter in other college classes, particularly in the social and natural sciences such as problem solving, financial management, and growth. The course provides students with critical thinking and quantitative reasoning skills needed to understand major issues in life. It develops students' ability to reason with quantitative information necessary to achieve success in a career. Open to first-year students. Prerequisite: appropriate score on Math/QR assessment. Offered both terms. (q)

MATH 130: MATHEMATICAL MODELING WITH PRECALCULUS (4) Clark
Emphasis is on the application of algebra, precalculus, and mathematical models to many exciting real world problems in art, music, business, economics, statistics, and biology and other sciences. Recommended for prospective teachers and non-mathematicians. Open to first-year students. Prerequisite: appropriate score on Math/QR assessment. Offered both terms. (q)

MATH 140: PRECALCULUS (4) Levering
A study of precalculus involving the application of functions and mathematical models to real-world problems in the natural sciences as well as art, music, business, economics, and the social sciences. Provides a minimal preparation for the calculus sequence. Recommended for prospective teachers. Open to first-year students. Prerequisites: q
Offered Term 2. (Q)

MATH 152: INTUITIVE CALCULUS (4) Department
Ideas and techniques of the one-variable calculus required to solve problems in a variety of disciplines. Concepts are presented from a geometric or intuitive point of view. Open to first-year students. Prerequisites: q and MATH 140 (or higher), or MATH 105 and permission, or equivalent. Not offered in 2019-20. (Q)

MATH 211: SYMBOLIC LOGIC (4) Downey
Also listed and described as PHIL 211. Open to first-year students with permission. Prerequisite: q. Offered Term 1. (Q)

MATH 241, 242: CALCULUS I, II (6, 4) Lynch, Wassell
The calculus of real functions of one real variable with emphasis on application of concepts to real world problems. Calculus I: functions, limits, continuity, the derivative, and applications of the derivative. Calculus II: antiderivatives, integrals, applications of the integral, improper integrals, sequences, and series. Open to first-year students. Prerequisites: for MATH 241: q and MATH 140 or equivalent for MATH 242: MATH 241. MATH 241 meets daily. Offered consecutive terms. (Q)

MATH 246: LABORATORIES IN MATHEMATICAL EXPERIMENTATION (2) Clark
A course in mathematical discovery. Students “do” mathematics by designing mathematical experiments, obtaining mathematical results, analyzing data, and making mathematical conjectures. Topics include fractals, cryptology, function iteration and chaos, strategy of games, and graph theory. Prerequisite: MATH 241. Open to first-year students. Offered Term 2.

MATH 255: METHODS OF MATRICES AND LINEAR ALGEBRA (4) Lynch
Properties of matrices; methods of finding an inverse; matrix equations and solutions; characteristic roots, important matrix forms; applications in social and physical sciences. Prerequisites: q and one college mathematics course above MATH 140 and permission. Open to first-year students. Offered Term 2. (Q)
MATH 290: INDEPENDENT STUDY (2 or 4) Department
Independent study conducted below the advanced level. Application must be made with faculty prior to registration. Offered any term.

MATH 298: TEACHING MATHEMATICS IN THE SECONDARY SCHOOLS (2) Levering
Pedagogical content knowledge, curricula development, and the NCTM standards of learning, classroom organization, methodologies, monitoring student progress, assessment and evaluation, resources and technology, professional growth, and approaches to teaching algebra, geometry, trigonometry, and analysis. Prerequisite: MATH 241. Not offered in 2019-20.

MATH 310: A TRANSITION TO ADVANCED MATHEMATICS (4) Wassell
An introduction to the standard methods of mathematical proof and their validity. Methods of proof are examined in detail and examples of each method are analyzed carefully. The emphasis is on enhancing students’ ability to write and understand mathematical proofs. Prerequisite: MATH 242 or permission. Offered Term 1.

MATH 316: SEVERAL-VARIABLE CALCULUS (4) Department
The calculus of functions of several real variables: vector spaces; differentiation of vector functions; partial derivatives; maxima and minima; and multiple integrals. Prerequisites: MATH 242. Not offered in 2019-20.

MATH 343: COMBINATORICS (2) Lynch
An introduction to combinatorics, with potential topics including basic counting principles, recursions, permutations, graph theory, and partially ordered sets. Prerequisite: MATH 242 or equivalent. Offered Term 2.

MATH 351: DIFFERENTIAL EQUATIONS (2) Department
An introduction to ordinary differential equations with an emphasis on applications. The course topics include first order differential equations, separable equations, linear second order differential equations, the Laplace Transform, series solutions, and numerical methods. Prerequisite: Math 242 or equivalent. (Gen) Not offered in 2019-20.

MATH 352: FIELDS AND CODES (2) Clark
An introduction to algebraic coding theory using finite fields and number-theory. Codes studied include binary, hexadecimal, ASCII, the error-correcting Hamming codes, BHC and Reed-Solomon codes. (Alg) Not offered in 2019-20.

MATH 360: ANALYSIS: ITERATIONS AND DYNAMICAL SYSTEMS (2) Clark
A mathematical study of convergence and limits. Students actively investigate concepts using numerical techniques followed by precise and careful analysis. Topics include fractals, linear and non-linear function iteration, basins of attraction, chaos, complex numbers and Newton’s method. (Ana) Not offered in 2019-20.

MATH 361: COMPLEX VARIABLES (2) Wassell
An introduction to complex analysis, with topics including the algebra of complex numbers, analytic functions, elementary functions, contour integrals, and Laurent series. (Ana) Prerequisite: Math 242 or equivalent. Offered Term 1.

MATH 362: REAL ANALYSIS (2) Wassell
An introduction to advanced calculus. Students will be reading and writing mathematical proofs that provide the theoretical basis for important topics from single-variable calculus, including limits, continuity, differentiation, integration, sequences, and series. (Ana) Prerequisite: Math 242 and MATH 310. Offered Term 2.

MATH 390: INDEPENDENT STUDY (2 or 4) Department
Independent study conducted at the advanced level. Application must be made with faculty prior to registration. Offered any term.

MATH 397: TEACHING MATHEMATICS IN THE ELEMENTARY AND MIDDLE SCHOOLS (4) Price
This course will address content knowledge, curriculum development, methodologies, assessment and evaluation, using resources and technology, and approaches to teaching elementary and middle school mathematics, within the framework of the NCTM standards of learning and the Common Core. Attention will be given to problems that students have in learning and understanding mathematics and ways to address those problems. Prerequisite: q. Offered Term 1.
MATH 399: INTERNSHIP (2 or 4)
Department
Application must be made with faculty prior to registration. May be proposed in any term.

MATH 471: MATHEMATICS SEMINAR (2)
Wassell
Emphasis is on written and oral communication of mathematical ideas. Senior mathematics majors complete a mathematics portfolio based on select assignments from previous mathematics, computer science, and statistics courses. Prerequisite: senior standing. Offered Term 1.

MATH 472: MATHEMATICS SEMINAR (2)
Lynch
In this course students have an opportunity to explore advanced and/or new mathematical topics. Students may suggest projects to departmental faculty for their approval and guidance. Students will present completed projects at the end of the semester. Offered Term 2.

MATH 480: SENIOR THESIS (2)
Department
An extensive research project to be carried out over one semester and Short Term. Open to qualified senior mathematics majors. Prerequisite: MATH 471. Offered Term 2.

MATH 490: SENIOR HONORS (2, 2)
Department
Open to majors with permission. Required both regular terms and Short Term. Interested majors should consult with the chair of the department no later than the end of the second term of their junior year. Application must be made with faculty prior to registration.

COURSES IN STATISTICS:

STAT 140: INTRODUCTION TO STATISTICS (4)
Clark
Topics are methods of description, measures of location and dispersion, simple linear regression, normal distributions, sampling distributions, interval estimation, and significance tests of proportions. Applications in both physical and social sciences. Use of a statistical computer package required. Open to first-year students. (Upon completion of CMPS 160, CMPS 3XX, and Stat 140 or Stat 251 students will be qualified to apply for Google’s free 10-week ML summer intensive.) Prerequisite: q. Offered both terms. (Q)

STAT 251: STATISTICAL METHODS (4)
Clark
Statistical inference for surveys and controlled experiments. Use of a statistical computer package required. Measures of central tendency and dispersion, normal, binomial, and t-distributions; Fisher’s exact test, sampling distributions; estimation and significance testing; analysis of variance; linear regression and correlation and commonly used transformations. (Upon completion of CMPS 160, CMPS 3XX, and Stat 140 or Stat 251 students will be qualified to apply for Google’s free 10-week ML summer intensive.) Prerequisite: q and appropriate recommendation from Math/QR assessment. Offered Term 1. (Q)

STAT 324: DATA WRANGLING WITH R (2)
Clark
An introduction to skills necessary for data wrangling and other modern techniques of statistical interpretation. Students will learn and practice techniques for acquiring, tidying, mutating, and merging data and data visualization, using R-Studio and the RMarkdown document writing system.
Pre-requisite: q. Offered Term 2.

STAT 343: PROBABILITY (2)
Clark
An introduction to combinatorial analysis, the axioms of probability, conditional probability, independence, discrete and continuous random variables, expectation and moment generating functions and stochastic processes. Students will actively investigate probabilistic situations and perform simulations. Open to first-year students. Prerequisite: Math 242. Offered by request in 2019-20.

STAT 361: REGRESSION (2)
Clark
The analysis of continuous response data. The focus is on linear and multiple regression with theoretical and practical training in statistical modeling. This is a hands-on, applied course where students will become proficient using R-Studio and Minitab to analyze data from a variety of fields, and will learn what assumptions underlie their models, how to test whether the data meet the assumptions, and what can be done when the assumptions are not met. Prerequisites: STAT 140 or STAT 251, or equivalent. Offered by request in 2019-20.
COURSES IN COMPUTER SCIENCE:

CMPS 110: COMPUTER BASICS AND APPLICATIONS (2) Schrementi
An introduction to the basics of personal computers and applications including word processing, spreadsheets, graphics, presentations, Web page development, and database management. Available in both PC and MAC formats. Course is offered online and requires students to work independently. Students are required to attend one orientation session and take the final exam on campus. Open to first-year students. Offered Term 1.

CMPS 160: APPLIED COMPUTING I WITH GOOGLE (4) Wassell
This introduction to computer science, developed by Google and their university partners, emphasizes problem solving and data analysis skills along with computer programming skills. Using Python, students will learn design, implementation, testing, and analysis of algorithms and programs. Within the context of programming, students will learn to formulate problems, think creatively about solutions, and express those solutions clearly and accurately. Problems will be chosen from real-world examples such as graphics, image processing, cryptography, data analysis, astronomy, video games, and environmental simulation. Part of the course includes modelling collaborative team project work as is done at Google, and Google engineers will provide information about their careers in the tech industry. Prior programming experience is not a requirement for this course. (Upon completion of CMPS 160, CMPS 3XX, and Stat 140 or Stat 251 students will be qualified to apply for Google’s free 10-week ML summer intensive.) Open to first-year students. Prerequisite: q. Offered Term 1. (Q)

CMPS 217: DATA STRUCTURES (4) Schrementi
Students will study fundamental data structures and their applications to problem solving. Object-oriented programming (OOP) is introduced and OOP techniques are explored, including inheritance, polymorphism, interfaces, and abstract classes. Prerequisite: CMPS 160 or permission. Not offered in 2019-20.

CMPS 245: DATA SCIENCE AND VISUALIZATION (4) Schrementi
Data Analytics principles and processes will be studied including gathering and transforming datasets, visualization methods, and how models of data are developed and evaluated. The application of data analysis software to real-world examples will also be investigated. Prerequisite: CMPS 160 or permission. Offered Term 1.

CMPS 290: INDEPENDENT STUDY (2 or 4) Department
Independent study conducted below the advanced level. Application must be made with faculty prior to registration. Offered any term.

CMPS 325: MACHINE LEARNING (2) Schrementi
An introduction to machine learning with a focus on understanding the fundamentals of neural network learning. Topics include Hebbian learning, single and multi-layer perceptrons, and data preparation techniques for improving learning. Open to first-year students. Prerequisite: MATH 241 or equivalent. Offered Term 1.

CMPS 335: DATA MINING TECHNIQUES (2) Schrementi
Students will study supervised and unsupervised strategies for data analysis and predictive modeling, including decision trees, clustering, and association rule learning. Prerequisite/Corequisite: MATH 241 and permission. Not offered in 2019-20

CMPS 360: APPLIED COMPUTING II: HOW TO THINK LIKE A DATA SCIENTIST (4) Clark, Wassell
Introduces students to the importance of gathering, cleaning, normalizing, visualizing and analyzing data to drive informed decision-making, no matter the field of study. Uses a combination of tools and techniques, including spreadsheets, SQL, Python and R to work on real-world datasets using a combination of procedural and basic machine learning algorithms. Students will learn to ask good, exploratory questions and develop metrics for designing a well-thought-out analysis. Presenting and discussing an analysis of datasets chosen by students will be an important component of the course. Upon completion of CMPS 160, CMPS 3XX, and Stat 140 or Stat 251 students will be qualified to apply for Google’s free 10-week ML summer intensive. Prerequisite CMPS 160. Offered Term 2.