Biology

MAJORS, MINOR

PROFESSOR: Renee Godard
ASSOCIATE PROFESSORS: Rebecca Beach, C. Morgan Wilson (chair)
ASSISTANT PROFESSOR: Elizabeth Gleim
VISITING ASSISTANT PROFESSOR: Mary Jane Carmichael, Elizabeth Xu
LABORATORY TECHNICIAN: Cheryl Taylor

The biology major seeks to develop in its students a sense of independent inquiry into the processes of life. Core courses in the major provide all students with a solid foundation in the biological sciences (from cells to ecosystems), while upper-level courses and seminars as well as research opportunities give students the chance to focus on specific areas of interest in biology. As well as exploring biological concepts, classes in the biology department promote the development of oral and written communication skills as well as critical thinking. Graduating seniors will have the skills to critique the primary biological literature, utilize biological instrumentation, and design and carry out biological research in several disciplines. Hollins graduates go on to graduate school, medical school, veterinary school, or other advanced training in allied health professions. Other graduates pursue a variety of careers in the biological sciences, becoming research assistants, environmental consultants, and teachers at both the elementary and secondary levels. Biology majors also occupy various technical positions in private firms and governmental agencies.

REQUIREMENTS FOR A MAJOR IN BIOLOGY (B.A.):
8 courses and associated laboratories, if applicable; one semester of senior seminar and allied courses (54–70 credits)

REQUIRED COURSES IN BIOLOGY:
- Three core courses in biology and accompanying laboratories:
 BIOL 207: Ecology and BIOL 207L (4, 2)
 BIOL 220: Human Physiology and BIOL 220L (4, 2)
 BIOL 236: Molecular and Cell Biology and BIOL 236L (4, 2)
- Five elective courses in biology at or above the 200 level (including labs, if applicable). A student may substitute one semester of BIOL 390, BIOL 391, or BIOL 480 for one of the elective courses. (A student may petition the department to include one course at the 100 level among the five elective courses, if the course is taken before the student decides to major in biology.)
- BIOL 399: Biological Internship (any term)
- BIOL 471: Senior Seminar (2)

REQUIRED ALLIED COURSES:
- CHEM 101 and CHEM 102: General Chemistry (including laboratories) (4, 2) (4, 2) or CHEM 105: Principles of Chemistry (including laboratory) (4, 2)
- One course in mathematics or statistics (140 or above) or PSY 208: Research Statistics (4)

FOR STUDENTS INTERESTED IN TEACHING IN SECONDARY SCHOOLS:
- CHEM 221 and 221L: Organic Chemistry I (4, 2)
- PHYS 151 and 151L: Physical Principles I (4, 2)
- ES/PHYS 241: Geology and Earth History (4)
- STAT 140: Introduction to Statistics or STAT 251: Statistics Methods I (4)

For students interested in medical school, veterinary school, or graduate programs in the health sciences or biology, the B.S. degree includes the necessary prerequisite allied courses required of most programs.

REQUIREMENTS FOR A MAJOR IN BIOLOGY (B.S.):
8 courses and associated laboratories, if applicable; one semester of senior seminar and allied courses (74–86 credits)

REQUIRED COURSES IN BIOLOGY:
- Three core courses in biology and accompanying laboratories:
 BIOL 207: Ecology and BIOL 207L (4, 2)
BIOL 220: Human Physiology and BIOL 220L (4, 2)
BIOL 236: Molecular and Cell Biology and BIOL 236L (4, 2)

- Five upper-level elective courses in biology three of which must be laboratory courses at the 300 level. Students pursuing a B.S. degree are encouraged to conduct independent research [either BIOL 391 or BIOL 480(4)]
- BIOL 399: Biological Internship (any term)
- BIOL 471: Senior Seminar (2)

REQUIRED ALLIED COURSES:

- CHEM 101 and CHEM 102: General Chemistry (including laboratories) (4, 2) (4, 2) or CHEM 105: Principles of Chemistry (including laboratory) (4, 2)
- One course in mathematics/statistics from the following: MATH 152, MATH 241, STAT 140, STAT 251, or PSY 208(4–6). Note that Math 140 is the pre-requisite course for PHYS 151/151L below.

And one of the following:

- Two additional chemistry courses (with labs), at or above the 200 level (8–12) AND PHYS 151/151L and PHYS 152/152L or PHYS 201/201L and PHYS 202/202L OR
- Four additional chemistry courses (with labs), at or above the 200 level (24)

REQUIREMENTS FOR A MINOR IN BIOLOGY:
Five courses and associated laboratories, if applicable (20-24 credits)

- Two core courses in biology and accompanying laboratories chosen from the following:
 - BIOL 207: Ecology and BIOL 207L (4, 2)
 - BIOL 220: Human Physiology and BIOL 220L (4, 2)
 - BIOL 236: Molecular and Cell Biology and BIOL 236L (4, 2)
- Three elective courses in biology at or above the 200 level (including laboratories, if applicable)

COURSES IN BIOLOGY:

BIOL 117: ENVIRONMENTAL SCIENCE (4) Carmichael, Gleim
In this lecture/laboratory course students explore how organisms, communities, and ecosystems function under natural conditions, as well as how they function under human influence. We will cover a variety of current environmental concerns in both the classroom and laboratory, including the patterns of human population growth, the extinction crisis, global warming, acid rain, water pollution, solid waste management, sustainable agriculture, and renewable energy. Also listed as ES 117. Not intended for students majoring in biology. Open to first-year students. No prerequisite. Offered both terms. (SCI)

BIOL 121: PLANTS AND PEOPLE – AN INTRODUCTION TO ETHNOBOTANY (4) Department
This interdisciplinary course draws from the natural and social sciences to investigate plant-human interactions among diverse, ancient and contemporary world cultures. We will explore the multifaceted aspects of why ethnobotany has been termed “the science of survival.” Through the combined lecture/laboratory format of this class, we will learn fundamental principles of science through hands-on scientific observation and experimentation. Also listed as INTL 121. Open to first-year students. Not open to students who have taken BIOL 241. No prerequisite. Not offered in 2017-18. (GLO, SCI)

BIOL 130: DEFENSE AGAINST FOREIGN AGENTS (4) Xu
This lecture/laboratory course will explore how the human immune system protects us from diseases and the pathogens that are constantly trying to breach this system. The outcome of this delicate balance dictates the state of human health. Topics covered will include infectious diseases, cancer, and other diseases of public health interest. Laboratory experiments will investigate different facets of the immune system, the ubiquity of microorganisms and antibiotic sensitivity/resistance. Not intended for students majoring in biology. Open to first-year students. No prerequisite. Offered both terms. (SCI)

This lecture/laboratory course explores the basic principles and functions of the human body (such as digesting a meal, taking a breath, or fighting an infection) and puts them in the context of total body function. The aims of this course are to provide students with hands-on experience gathering physiological data, as well as with a basic knowledge of human health, which will provide them with a foundation from which they can ask informed questions of a physician about their own health and/or the health of their family members. Not intended for students majoring in biology. Open to first-year students. No prerequisite. Not offered in 2017-18. (SCI)
BIOL 133: MARINE ECOLOGY (2) Godard, Wilson
Students in this course will examine the ecology of marine ecosystems. Additionally, they will learn to recognize and identify characteristics and behavior of more than 100 marine species. This course is only open to students that will be participating in The Caribbean Environment Short Term course. Students will be enrolled by instructor. Offered Term 1.

BIOL 140: HUMAN GENETICS (4) Department
In this combined lecture/laboratory course we explore the science behind such issues as human cloning, genetic testing, gene therapy, forensic DNA evidence, and genetically modified foods. Students gain an understanding of how the Human Genome Project may impact their lives and get a hands-on introduction to the laboratory analyses used in these studies. Not intended for students majoring in biology. Open to first-year students. No prerequisite. Not offered in 2017-18. (SCI)

BIOL 197F: LASERS, NANOPARTICLES, AND MOLECULAR MEDICINE: ADVANCES IN BIOPHYSICS AND BIOTECHNOLOGY WITH MEDICAL APPLICATIONS (4) Beach, Gentry
Have you ever wondered how MRIs and CT scans work? Would you like to learn about the emerging field of nanomedicine? Are you interested in the latest methods for detection and treatment of diseases like Alzheimer’s and cancer? Would you like to understand the connection between biophysics and medicine in these new and innovative technologies? Are you curious about new career options in fields related to biotechnology and medicine? In Lasers, Nanoparticles, and Molecular Medicine, we will investigate not only the technologies at the forefront of these biomedical fields but will look deeper into the physical principles involved in their construction and operation. We will examine areas where physics and biology intersect as we strive to understand the human organism, the diseases that affect it, and how we might be able to treat them. Also listed as PHYS 197F. Open to first-year students only. Placement to be determined over the summer. Offered Term 1. (r)

BIOL 207: ECOLOGY (4) Gleim, Godard
As one of the core courses for the biology major, students explore the structure and function of the natural world. We examine the relationships between organisms and their physical and biological environment, global patterns of climate and biological life, patterns in population dynamics, as well as structure and change in communities of organisms. Also listed as ES 207. Open to first-year students. No prerequisite. Offered Term 1. (SCI: must take lab to fulfill SCI)

BIOL 207L: LABORATORY FOR ECOLOGY (2) Gleim, Godard
Students explore local aquatic and terrestrial ecosystems as well as gain hands-on experience carrying out ecological research in this field laboratory course. Students will also have several opportunities to carry out their own independent research. Also listed as ES 207L. Corequisite: BIOL 207. Offered Term 1. (SCI)

BIOL 220: HUMAN PHYSIOLOGY (4) Carmichael, Wilson
As one of the three core courses for the biology major, students explore physiological mechanisms of the human body on the cellular, tissue, organ, organ system, and whole-organism levels, with emphasis on the way in which the human body responds to various external and internal stimuli to maintain homeostasis. Open to first-year students. Prerequisite: CHEM 101 or CHEM 105 or permission. Offered Term 2. (SCI: must take lab to fulfill SCI)

BIOL 220L: LABORATORY FOR HUMAN PHYSIOLOGY (2) Carmichael, Wilson
In this inquiry-based laboratory course, we explore many of the tools and techniques used in the study of physiological mechanisms. Students will employ hypothesis testing to explore these mechanisms and learn the essentials of scientific research and writing. Corequisite: BIOL 220. Offered Term 2. (SCI)

BIOL 236: MOLECULAR AND CELL BIOLOGY (4) Xu
The diversity and complexity of different cell types found in multicellular organisms is extensive, yet all eukaryotic cells have the same basic molecular components. One of the three core courses for the biology major, this course provides an overview of cell structure, biological macromolecules, cellular reproduction, and gene structure and function. Prerequisite: CHEM 102 or CHEM 105, BIOL 220, or permission. Offered Term 2. (SCI: must take lab to fulfill SCI)

BIOL 236L: LABORATORY FOR MOLECULAR AND CELL BIOLOGY (2) Xu
This project-oriented laboratory provides students with the opportunity to analyze and characterize DNA and other cellular molecules. The course is designed to give students experience with an array of molecular biological techniques. In addition, students are exposed to elements of research and experimental design in a directed framework. Corequisite: BIOL 236. Offered Term 2. (SCI)
BIOL 260: HUMAN ANATOMY (4)
Godard, Wilson
In this course, students have the opportunity to investigate the structure of the human body through independent exploration of texts and computer-based models of human anatomy. Students will be evaluated for their understanding of each anatomical system through written tests, lab practicals, and oral exams. This self-directed course is only for students who need human anatomy as a prerequisite for professional schools. Prerequisite: BIOL 220 and BIOL 220L. Permission of instructor is required. Offered Term 1.

BIOL 290: INDEPENDENT STUDY (2 or 4)
Department
Tutorials based on standard primary and secondary sources or may contain an experiential component. These studies, below the advanced level, must be planned and approved in consultation with a member of the department prior to registration. Maximum of 8 credits permissible. Offered any term.

BIOL 310: EVOLUTION AND THE HUMAN CONDITION (4)
Department
In this seminar students explore basic evolutionary concepts, such as natural selection, sexual selection, and population genetics and relate them to issues in human health and disease, the extinction crisis, and other impacts associated with human activity in the world. Our investigations will include an exploration of a variety of issues from the costs and benefits of aging, to the host-pathogen arms race, to the long-term viability of conservation programs for endangered species. Prerequisite: one of the three biology core courses (BIOL 207, BIOL 220, BIOL 236) or permission. Not offered in 2017-18.

BIOL 312: MICROBIOLOGY (4)
Carmichael
The term microorganism brings to mind the thought of disease and infection, yet plants and animals cannot exist without the many microbes in our world. This course provides a survey of microorganisms, focusing largely on the bacterial organisms and viruses that have the greatest impact on our existence. Prerequisites: BIOL 220 and BIOL 236; CHEM 102 or CHEM 105. Offered Term 2.

BIOL 312L: LABORATORY FOR MICROBIOLOGY (2)
Carmichael
This lab concentrates on techniques for culturing, handling, and identifying microorganisms. Students also carry out independent laboratory projects during the final weeks of the semester. Corequisite: BIOL 312. Offered Term 2.

BIOL 313: INVERTEBRATE ZOOLOGY (4)
Wilson
Invertebrates, members of the animal kingdom lacking a backbone, comprise 95 percent of the animals on Earth today. In this course students explore the anatomy, physiology, behavior, ecology, and taxonomy of this incredibly diverse group of animals. Prerequisite: BIOL/ES 207 or BIOL 220. Offered Term 1.

BIOL 313L: LABORATORY FOR INVERTEBRATE ZOOLOGY (2)
Wilson
This laboratory provides students the opportunity to explore the anatomy of invertebrate organisms, the environments in which they live, and the techniques used to classify them. Exercises will be conducted in both the laboratory and the field. Beyond the designated laboratory meeting times, students will be expected to participate in a weekend field trip to the Eastern Shore (VA and/or MD) in September or early October. In addition, students will be expected to participate in 1-2 other day or evening excursions to study invertebrates. The cost of rooms and meals for the weekend trip will be shared by participants ($150-200 required). Corequisite: BIOL 313. Offered Term 1.

BIOL 314: GENETICS (4)
Department
This course covers aspects of inheritance, including classical Mendelian and modern molecular genetics. Population genetics and variation will also be explored. Prerequisite: BIOL 236 or permission. Not offered in 2017-2018.

BIOL 314L: LABORATORY FOR GENETICS (2)
Department
In this laboratory students gain practical experience in the techniques of both classical geneticists and molecular biologists. Laboratory investigations include breeding experiments with model organisms, as well as molecular genetic experiments using recombinant DNA methodology. Corequisite: BIOL 314. Not offered in 2017-2018.

BIOL 315: COMPARATIVE VERTEBRATE ANATOMY (4)
Wilson
Why are there no flying elephants? In this course we will compare the design and structure of vertebrate animals in relationship to the environments in which they evolve. We will emphasize the functional morphology of anatomical systems and major adaptive changes in the evolution of vertebrate structure. Prerequisite: BIOL 220. Not offered in 2017-2018.
BIOL 315L: LABORATORY FOR COMPARATIVE VERTEBRATE ANATOMY (2) Wilson
This laboratory involves detailed dissections and comparisons of organ systems in the lamprey, shark, and cat.

BIOL 317: BIOLOGICAL PSYCHOLOGY (4) Bowers
Also listed and described as PSY 317. Prerequisites: PSY 141 (or permission) and BIOL 220. Offered Term 1. (SCI)

BIOL 322: DEVELOPMENTAL BIOLOGY (4) Department
Development from the fertilized egg to a complete adult organism requires a precisely coordinated series of events involving molecular, cellular, and organismal mechanisms. This course provides an integrative survey of animal development, with a focus on those unifying mechanisms that are common to all developing embryos. Prerequisite: BIOL 236 or BIOL 314. Not offered in 2017-2018.

BIOL 322L: LABORATORY FOR DEVELOPMENTAL BIOLOGY (2) Department
This laboratory is designed to give the student hands-on experience in experimental embryology. The first part of the course is devoted to techniques for handling, culturing, and manipulating invertebrate and vertebrate embryos. Students then apply these techniques in self-designed independent projects during the remaining half of the semester. Corequisite: BIOL 322. Not offered 2017-18.

BIOL 323: ANIMAL BEHAVIOR (4) Godard
Analyses of animal behavior incorporating ethological, ecological, and evolutionary perspectives. This interdisciplinary course covers the development, underlying mechanisms, adaptive value, and evolution of behavior. Also listed as PSY 323. Prerequisite: BIOL/ES 207 or BIOL 220. Offered Term 2.

BIOL 323L: LABORATORY FOR ANIMAL BEHAVIOR (2) Godard
Observational and experimental techniques in field and laboratory settings. The lab culminates in independent group research projects. Beyond the designated laboratory meetings, there may be one day-long field trip to observe patterns of behavior in other species. The cost for this trip will be shared by participants. Also listed as PSY 323L. Corequisite: BIOL 323. Offered Term 2.

BIOL 328: FIELD VERTEBRATE ZOOLOGY (4) Godard
In this lecture/lab course, we will use vertebrates as our focus as we explore issues of evolution, ecology, physiology, behavior and conservation as well as develop skills associated with studying vertebrates in the field. Beyond the scheduled classes, students are required to participate in a 3 day weekend field trip to the Eastern Shore of Virginia to study avian biodiversity as well as several evening excursions to examine patterns of amphibian biodiversity. Course fee of $150-200 is required. Prerequisite: BIOL/ES 207 or permission from instructor. Also listed as ES 328. Prerequisite: BIOL/ES 207 or permission. Not offered in 2017-18.

BIOL 332: IMMUNOLOGY (4) Xu
This seminar-style course is intended to provide an in-depth analysis of the cell and molecular biology of the human immune system, focusing on antibody structure and function, cells and tissues of the immune system, and the genetic basis for antibody diversity. Advances in studies of immune deficiencies, autoimmune diseases, the allergic response, transplant rejection, and cancer are also covered. Prerequisites: BIOL 220 and BIOL 236 and CHEM 101 or CHEM 105. Offered Term 1.

BIOL 332L: LABORATORY FOR IMMUNOLOGY (2) Xu
This laboratory will provide students with hands-on experience on classical experimental techniques used in the field of immunology research. Laboratory methods will focus on molecular and biochemical aspects of immunology. Corequisite: BIOL 332. Offered Term 1.

BIOL 337:ORNITHOLOGY (4) Wilson
With nearly 10,000 recognized species, the taxonomic class Aves is one of the most diverse groups of animals on earth. In this lecture course students will explore the anatomy, physiology, behavior, taxonomy, evolution, and life history of birds. Prerequisite: BIOL/ES 207 or permission from instructor. Also listed as ES 337. Prerequisite: BIOL/ES 207 or permission. Offered Term 2.

BIOL 337L: LABORATORY FOR ORNITHOLOGY (2) Wilson
Students in this field laboratory course will explore the life history of birds, observe them in their natural environments, and learn to identify them by sight and sound. Students will be expected to participate in a weekend field trip (to either the North Carolina coast or Eastern Shore of Virginia) and in several other morning/evening
activities. The cost of rooms and meals for the weekend trip will be shared by participants ($150-200 required). Corequisite: BIOL 337. Also listed as ES 337. Prerequisite: BIOL/ES 207 or permission. Offered Term 2.

BIOL 341: PLANT BIOLOGY (4)
Gleim
In this course, students will gain a foundational comprehension of the structure, function, and diversity of plants, and will be challenged to build an integrated understanding of plants, from an awareness of their molecular biology to their roles in an ecosystem. We will then tap into this knowledge to engage in active learning experiences to recognize and appreciate practical applications of plant biology, including conservation, environmental sustainability, biotechnology, and the important connections of plants to society. Also listed as ES 341. Prerequisite: BIOL 207. Not offered in 2017-18.

BIOL 341L: LABORATORY FOR PLANT BIOLOGY (2)
Gleim
Laboratory sessions will provide hands-on experiences in laboratory and field settings. A significant portion of the lab will be field-based, with time being spent learning to identify native and common invasive plants, with particular focus on woody species. Students will conduct a multi-week research project and present their findings. Also listed as ES 341L. Co-requisite: BIOL 341. Not offered in 2017-18.

BIOL 350: SPECIAL TOPIC: BIOGEOCHEMISTRY: AN ANALYSIS OF GLOBAL CHANGE (4)
Carmichael
Much like the human body, the Earth’s climate and ecological systems have been finely tuned to maintain homeostasis. In the human body, this occurs via feedback loops and exchange between major organ systems. In the Earth’s climate and ecological systems, this balance is maintained by the flow of energy and materials. Biogeochemistry is the study of this flow of energy and materials within the Earth’s planetary system. In this course, we will cover processes that control the cycling of C, N, and P and other biochemical elements in terrestrial and aquatic systems, with special emphasis placed on the coupling between human and natural systems. Topics include the origin of Earth and the development of elemental cycles, the Earth as a chemical system, the biogeochemical cycling of elements in the atmosphere, lithosphere, and biosphere, the global cycles of H2O, C, N and P, and the expanding human footprint on biogeochemical processes. Prerequisites: CHEM 101/102 or CHEM 105, BIOL 207 or BIOL/ES 117. Also listed as ES 350. Offered Term 1.

BIOL 351: BIOCHEMISTRY (4)
Boatman
Also listed and described as CHEM 351. Prerequisites: CHEM 222 and CHEM 222L or equivalent. Offered Term 1.

BIOL 351L: LABORATORY FOR BIOCHEMISTRY (2)
Boatman
Also listed and described as CHEM 351L. Corequisite: BIOL 351. Offered Term 1.

BIOL 352: ADVANCED BIOCHEMISTRY (4)
Boatman
Also listed and described as CHEM 352. Prerequisite: BIOL 351. Offered Term 2.

BIOL 352L: LABORATORY FOR ADVANCED BIOCHEMISTRY (2)
Boatman
Also listed and described as CHEM 352L. Corequisite: BIOL 352. Not offered in 2017-18.

BIOL 357: CONSERVATION BIOLOGY (4)
Gleim
In this seminar, students will apply active learning strategies to build a conceptual foundation for conservation biology, including conservation values and ethics. Building on this foundation, we will explore the primary threats to biological conservation, including habitat degradation, overexploitation, invasive species, and biological impacts of climate change. We will also explore how to apply this knowledge through learning about and utilizing various professional approaches used to solve conservation problems. Also listed as ES 357. Prerequisites: BIOL/ES 207 and 207L and permission. Offered Term 2.

BIOL 357L: LABORATORY FOR CONSERVATION BIOLOGY (2)
Gleim
Laboratory activities will cultivate an understanding of real-world, hands-on conservation biology through completing a multi-week research project that will involve experimental design and methodology development, use of various field techniques to collect data, analysis and interpretation of data, and presentation of research findings. In addition, students will be trained on the use of professional tools and methods (e.g. Geographic Information Systems (GIS) and population analysis) which aid in the management and preservation of biodiversity. Students will be expected to participate in one weekend work session during the semester. Corequisite: BIOL 357. Offered Term 2.

BIOL 390: INDEPENDENT STUDY (2 or 4)
Department
Independent study conducted at the advanced level. Application must be made with faculty prior to registration. Offered any term.
BIOL 391: INDEPENDENT RESEARCH IN BIOLOGY (4)
This course is intended for students conducting independent scientific research. At the beginning of the semester in which the student enrolls in this course, a proposal for the research project will be developed in consultation with the faculty supervisor. The project must involve laboratory and/or field research with significant data collection and analysis. The student will be expected to produce a formal scientific report at the conclusion of the project, which should include a review of the scientific literature relevant to the study. Registration for this course must occur before the semester in which the research is to be conducted. Prerequisites: two of the three biology core courses (BIOL 207, BIOL 220, or BIOL 236). May not be taken in the second semester of the senior year without prior departmental approval. Offered any term.

BIOL 399: INTERNSHIP (4)
Application must be made with faculty prior to registration. May be proposed any term.

BIOL 471: SENIOR SEMINAR (2)
All majors are required to take this course during the fall term of their senior year. Students in this capstone course will draw upon course content from their major to exploring common readings and present on a relevant topic of interest. In addition, each student will prepare a portfolio summarizing her academic experiences (to include a curriculum vitae, resume, and cover letter, as well as summaries of coursework and skills attained, internships and abroad experiences). Offered Term 1.

BIOL 480: SENIOR THESIS (4, 4)
Students are expected to carry out a year-long research project (includes Short Term). The research project will be summarized in a paper of publication quality. If a student’s status and thesis meet the requirements for honors, then BIOL 480 will be converted to BIOL 490. Application must be made with faculty prior to registration.

BIOL 490: SENIOR HONORS THESIS (4, 4)
Students should not register for BIOL 490. Research is initially conducted as BIOL 480: Senior Thesis. Honors status will be determined in the spring.